

HAP 2.5 Hoist Anchor Plate

Product Technical Datasheet Steel-to-concrete Update: Jun 25

HAP 2.5 Hoist Anchor Plate

Hoist Anchor Plate with 2.5T WLL capacity for elevator shaft operations

Anchor version		Benefits
		 2.5T WLL capacity according to Machinery Directive 2006/42/EC.
		 Anchorage of hoist to be designed with PROFIS Engineering suite for cracked and uncracked concrete, ≥ C20/25, according to EN1992-4
	HAP 2.5 + HST4/HST3	 Type-examination certificate issued by Liftinstituut B.V. Recommended and designed for anchorage with anchors: HST4 M12x105 (h_{nom}=69 mm) HST3 M12x115 (h_{nom}=80 mm) HUS4-H 10x110 (h_{nom3}=85mm)
	HAP 2.5 + HUS4-H	 Delivered pre-assembled (one piece) with included anchor options available: HAP 2.5 + Anchors (4xHST4, 4xHST3 or 4xHUS4). Lightweight: One person installation possible at overhead position total weight < 3Kg. No rotation of hook point allowed preventing swiveling. Large hooking area for easy engagement. Hook point: Ø>90mm. Compact design for narrow spaces: rigid height < 56mm. Printed IFU on the product for immediate clarification. < 45° loading allowed in all directions.
		Application HAP 2.5 is designed to be used as post installed "master hoist point" for installation and/or maintenance in elevator shafts under static and quasi-static loading. The HAP2.5 can be used with manual or motor hoists and bears a working load up to 2.5 tons in variable directions.

AL

Base material

A A

Concrete (uncracked)

Concrete (cracked)

Drilling, cleaning, setting

drilled holes

Load conditions

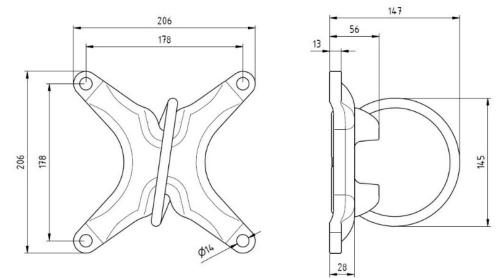
Other information

Instructions for use

The instructions for use can be viewed using the link in the instructions for use table or the QR code/link in the Hilti webpage table.

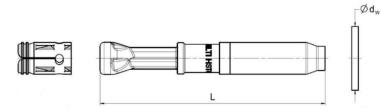
Instructions for use (IFU)

Anchor size	HST3 M12	HST4 M12	HUS4 M10
HAP		IFU HAP 2.5	
Anchor Tester		<u>IFU HAT 28</u>	


Link to Hilti Webpage

HST4	HUS4-H	HST3	<u>HAP 2.5</u>
	圓錢圓		
100000000 10000000			
E1293366	LE157922	LEI VOIDAL	E19-785

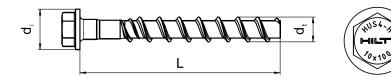
Fastener special dimensions


HAP 2.5 dimension

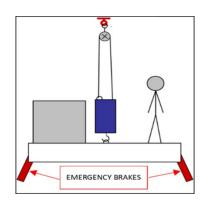

HST4 and HST3

Anchor type			HST4 M12	HST3 M12
Recommended anchor length	L	[mm]	105	115
Outer diameter of washer	d _w ≥	[mm]	2	4

HST4 M12



HST3 M12



HUS4-H

Anchor size			HUS4 H 10
Outer diameter of screw thread	dt	[mm]	12,70
Diameter of integrated washer	di	[mm]	20,50
Recommended anchor length	L	[mm]	110

Men riding (Car-top Lift-installation Method) (worker and material on top of the cabin) In case the main hoist point fails, the platform falls ~0.3m until the elevator safety-gears will automatically activate bringing the elevator cabin to a complete stop. Emergency brakes need to be activated.

HAP Working Load Limitation (WLL)^{a) b)}

a) In accordance with machinery safety directive 2006/42/EC the following working coefficients were implemented:

- Working coefficient of all metal components: $\gamma = 4$

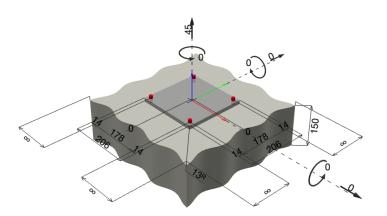
- Working coefficient of the cables: $\gamma = 5$

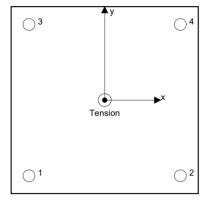
b) Data valid (hoist only) for static loading and fatigue cycling loading for the number of cycles, 1000 < cycles< 10000, under pure tension or up to a load inclination of 45°. see test report TWU72/18Anchors must be verified separately. For further details please contact you Hilti representative,

Design of anchorage

HAP 2.5 is designed to be used as hoist point for lifting loads under variable directions in elevator installation or maintenance. The design of the anchor connection of the HAP 2.5 must be verified for varying load conditions (varying directions, dynamic effects, etc.). The below examples are of the anchor connection of the HAP 2.5 and have been designed according to ultimate load cases: a concrete anchor can only be considered as suitable for use with the HAP 2.5 hoist point if the approved anchor satisfies the following load scenarios (e.g. by PROFIS Engineering calculation) with EN1992-4 calculation method. It has to be done in accordance with the relevant codes/ETAs for each application case separately. In case of different design conditions a new calculation should be performed.

Static and quasi-static loading based on ETA-21/0878 (HST4), ETA 98/0001 (HST3) and ETA-20/0867(HUS4-H).Design according to EN 1992-4

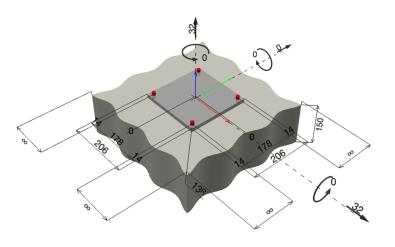

All data in this section applies to: (Data for max 2.5 t WLL capacity applies to HAP 2.5 only when)

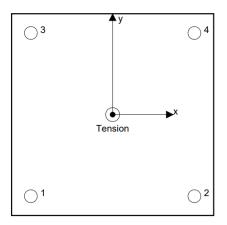

- Correct setting (See setting instruction)
- For a group anchor (see the anchor arrangement below)
- Concrete C20/25, Cracked concrete
- Hammer drilled holes
- No edge distance influence
- Embedment depth, as specified in the table of this section
- The anchor calculation is based on a rigid baseplate assumption
- No shock loading; dynamic amplification factor γ_{dyn} up to 1,8 (EN 1991-1-1)

For specific design cases refer to **PROFIS Engineering**.

Load Case 1 – Pure tension 90° angle

Action: N = 2,5t (WLL) x 1,8 (γ dyn) = 45 kN Anchor arrangment


Design resistance - HST4 M12 ,HST3 M12 and HUS4-H M10

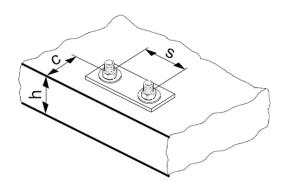

Anchor size				HST4 M12	HST3 M12	HUS4-H M10
Effective anchora	ge depth		h _{ef}	60 mm	70 mm	68 mm
Nominal embedm	nent depth		h _{nom}	69 mm	80 mm	85 mm
Load direction Anchor reactions Group force				Max. Util. Anchor		
	Anchor 1	11.25 kN	45 kN	45 kN (concrete breakout)		
	Anchor 2	11.25 kN			99% (concrete breakout)	100% (concrete breakout)
Tension N _{Rd}	Anchor 3	11.25 kN				
	Anchor 4	11.25 kN		2. centouty		2. Canodity

Load Case 2 – Combination Tension & Shear 45° angle Action: $N = N_t x \sin 45^\circ = 32kN$, $Vx = N_t x \cos 45^\circ = 32kN$

Action: $N = N_t X \sin 45^\circ = 32 kN$, $VX = N_t X \cos 45^\circ = 32 kN$ Anchor arrangment

Design resistance - HST4 M12 ,HST3 M12 and HUS4-H M10

Anchor size					HST4 M12	HST3 M12	HUS4-H 10			
Effective anchorage depth hef				h _{ef}	60 mm	70 mm	62.9 mm			
Nominal embed	Nominal embedment depth hnom				69 mm	80 mm	85 mm			
Load direction	oad direction Anchor reactions Group force					Max. Util. Anchor				
	Anchor 1	8 kN		- 32 kN						
Tanaian N	Anchor 2	8 kN								
Tension N _{Rd}	Anchor 3	8 kN	-							
	Anchor 4	8 kN			Combination:	Combination:	Combination:			
	Anchor 1		8 kN	8 kN		Concrete 65% Steel 14%	Concrete 71% Steel 15%	Concrete 79% Steel 13%		
Shear V _{Rd}	Anchor 2		8 kN	32 kN						
Shear V _{Rd}	Anchor 3] -	8 kN		- 32 KIN	J JZ KIN	3 kN 32 kin			
	Anchor 4]	8 kN							



Setting information

Setting parameters

Parameter			HAP 2.5
Minimum base material thickness	h _{min}	[mm]	According to technical data of applied anchors
Spacing (Hoist Anchor Plate)	s	[mm]	178
Edge distance	С	[mm]	According to technical data of applied anchors ^{a)}

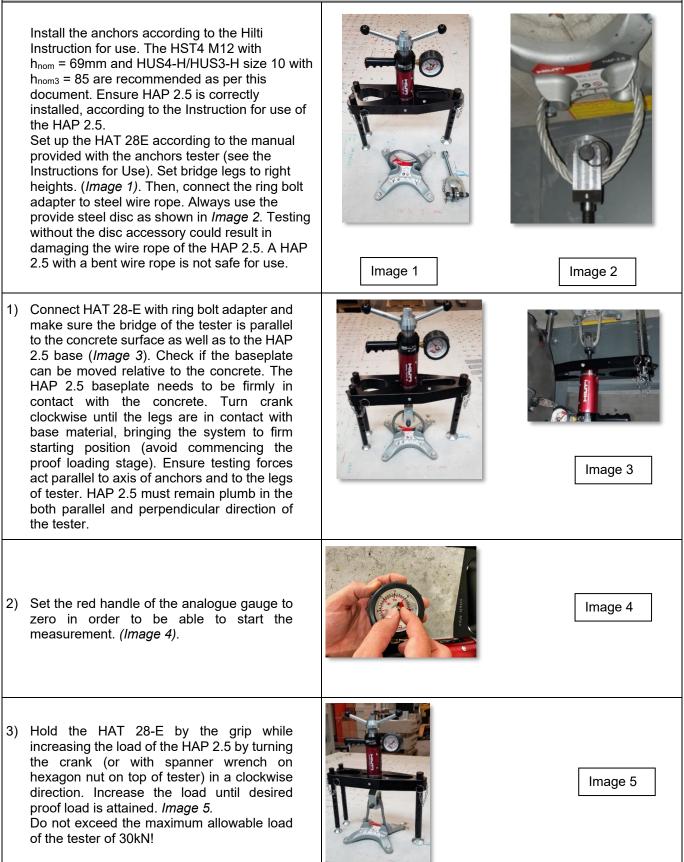
^a)For smaller edge distances the designs should be verified with appropriate modelling and calculations. Please see Profis Engineering

Inspection criteria

Caution: The attachment point must be in a good operating condition and undamaged. Broken wires, signs of corrosion, visible distortions or deformations are unacceptable.

Caution: The shaft ceiling, particularly the concrete, must be in sound condition. Any visible cracking, blow out or signs of corrosion are unacceptable.

Caution: Do not use an attachment point which has an unreadable or missing identification label.



Onsite qualification

HAP 2.5 is designed for temporary & permanent application under dry indoor conditions.

Recommended tools to do onsite qualification: Anchor Tester HAT 28-E (#386372) with HAT Kit HAP 2.5 (#2301103).

Installation instructions

4)	Hold the HAT 28-E by the grip while increasing the load of the HAP 2.5 by turning the crank (or with spanner wrench on hexagon nut on top of tester) in a clockwise direction. Increase the load until desired proof load is attained. <i>Image 5.</i> Do not exceed the maximum allowable load of the tester of 30kN!		Image 5
5)	Keep the proof load applied to the HAP 2.5 for the required time. Do not keep retightening if the loading relaxes during this time. The displacement is not allowed to increase in this time.	1 Min	
6)	Release the load by turning the crank counterclockwise (<i>Image 6</i>)		Image 6
7)	Remove HAT 28-E and ring bolt adapter.		
8)	 Perform visual check on HAP 2.5 and base material (<i>Image 7</i>). Check if the baseplate is still firmly pressed to the concrete. If baseplate is loose, re-tight anchors and repeat procedure from the beginning. We recommend NOT TO USE the tested HAP 2.5 when: The baseplate is loose even after repeated test procedure. If the basematerial shows cracks during and or after the test around the HAP 2.5 (this could be a sign of an overload of the capacity of the concrete) If the HAP is damaged or deformed or the wire rope. 		Image 7
9)	If the testing was successful mark or label the HAP 2.5 according to your requirements.		